/** * * @license MIT License * * Copyright (c) 2022 lewis he * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * * @file QMI8658_CalibrationExample.ino * @author Lewis He (lewishe@outlook.com) * @date 2024-09-23 * */ #include #include #include #include "SensorQMI8658.hpp" #ifdef ARDUINO_T_BEAM_S3_SUPREME #include //PMU Library https://github.com/lewisxhe/XPowersLib.git #endif // #define USE_I2C //Using the I2C interface #ifdef USE_I2C #ifndef SENSOR_SDA #define SENSOR_SDA 17 #endif #ifndef SENSOR_SCL #define SENSOR_SCL 18 #endif #else /*SPI interface*/ #ifndef SPI_MOSI #define SPI_MOSI (35) #endif #ifndef SPI_SCK #define SPI_SCK (36) #endif #ifndef SPI_MISO #define SPI_MISO (37) #endif #endif /*USE_I2C*/ #ifndef IMU_CS #define IMU_CS 34 // IMU CS PIN #endif #ifndef IMU_IRQ #define IMU_IRQ 33 // IMU INT PIN #endif #ifndef OLED_SDA #define OLED_SDA 22 // Display Wire SDA Pin #endif #ifndef OLED_SCL #define OLED_SCL 21 // Display Wire SCL Pin #endif SensorQMI8658 qmi; IMUdata acc; IMUdata gyr; void beginPower() { // T_BEAM_S3_SUPREME The PMU voltage needs to be turned on to use the sensor #if defined(ARDUINO_T_BEAM_S3_SUPREME) XPowersAXP2101 power; power.begin(Wire1, AXP2101_SLAVE_ADDRESS, 42, 41); power.disableALDO1(); power.disableALDO2(); delay(250); power.setALDO1Voltage(3300); power.enableALDO1(); power.setALDO2Voltage(3300); power.enableALDO2(); #endif } void setup() { Serial.begin(115200); while (!Serial); delay(3000); beginPower(); bool ret = false; #ifdef USE_I2C ret = qmi.begin(Wire, QMI8658_L_SLAVE_ADDRESS, SENSOR_SDA, SENSOR_SCL); #else #if defined(SPI_MOSI) && defined(SPI_SCK) && defined(SPI_MISO) ret = qmi.begin(SPI, IMU_CS, SPI_MOSI, SPI_MISO, SPI_SCK); #else ret = qmi.begin(SPI, IMU_CS); #endif #endif if (!ret) { Serial.println("Failed to find QMI8658 - check your wiring!"); while (1) { delay(1000); } } /* Get chip id*/ Serial.print("Device ID:"); Serial.println(qmi.getChipID(), HEX); uint16_t gX_gain = 0, gY_gain = 0, gZ_gain = 0; // Call internal calibration to calibrate the sensor ret = false; while (!ret) { // Calibrate only once, do not obtain calibration value // result = qmi.calibration(); // Get the calibration value after calibration ret = qmi.calibration(&gX_gain, &gY_gain, &gZ_gain); if (ret) { Serial.println("All calibrations are completed"); break; } int i = 5; while (i--) { Serial.print("Calibration failed, please leave the sensor alone and keep quiet! , Will try again in "); Serial.print(i); Serial.println(" seconds"); } } // Save the calibration data to EEPROM or flash, and then write the calibration value directly to the next run // Here only print Serial.print("Calibration data ->"); Serial.print("Gyro-X gain : "); Serial.println(gX_gain); Serial.print("Gyro-Y gain : "); Serial.println(gY_gain); Serial.print("Gyro-Z gain : "); Serial.println(gZ_gain); // The example only provides a method for writing calibration values ret = qmi.writeCalibration(gX_gain, gY_gain, gZ_gain); if (ret) { Serial.println("Write calibrations successfully"); } else { Serial.println("Write calibrations failed!"); } qmi.configAccelerometer( /* * ACC_RANGE_2G * ACC_RANGE_4G * ACC_RANGE_8G * ACC_RANGE_16G * */ SensorQMI8658::ACC_RANGE_4G, /* * ACC_ODR_1000H * ACC_ODR_500Hz * ACC_ODR_250Hz * ACC_ODR_125Hz * ACC_ODR_62_5Hz * ACC_ODR_31_25Hz * ACC_ODR_LOWPOWER_128Hz * ACC_ODR_LOWPOWER_21Hz * ACC_ODR_LOWPOWER_11Hz * ACC_ODR_LOWPOWER_3H * */ SensorQMI8658::ACC_ODR_1000Hz, /* * LPF_MODE_0 //2.66% of ODR * LPF_MODE_1 //3.63% of ODR * LPF_MODE_2 //5.39% of ODR * LPF_MODE_3 //13.37% of ODR * LPF_OFF // OFF Low-Pass Fitter * */ SensorQMI8658::LPF_MODE_0); qmi.configGyroscope( /* * GYR_RANGE_16DPS * GYR_RANGE_32DPS * GYR_RANGE_64DPS * GYR_RANGE_128DPS * GYR_RANGE_256DPS * GYR_RANGE_512DPS * GYR_RANGE_1024DPS * */ SensorQMI8658::GYR_RANGE_64DPS, /* * GYR_ODR_7174_4Hz * GYR_ODR_3587_2Hz * GYR_ODR_1793_6Hz * GYR_ODR_896_8Hz * GYR_ODR_448_4Hz * GYR_ODR_224_2Hz * GYR_ODR_112_1Hz * GYR_ODR_56_05Hz * GYR_ODR_28_025H * */ SensorQMI8658::GYR_ODR_896_8Hz, /* * LPF_MODE_0 //2.66% of ODR * LPF_MODE_1 //3.63% of ODR * LPF_MODE_2 //5.39% of ODR * LPF_MODE_3 //13.37% of ODR * LPF_OFF // OFF Low-Pass Fitter * */ SensorQMI8658::LPF_MODE_3); /* * If both the accelerometer and gyroscope sensors are turned on at the same time, * the output frequency will be based on the gyroscope output frequency. * The example configuration is 896.8HZ output frequency, * so the acceleration output frequency is also limited to 896.8HZ * */ qmi.enableGyroscope(); qmi.enableAccelerometer(); // Print register configuration information qmi.dumpCtrlRegister(); Serial.println("Read data now..."); } void loop() { if (qmi.getDataReady()) { if (qmi.getAccelerometer(acc.x, acc.y, acc.z)) { Serial.print("ACCEL.x:"); Serial.print(acc.x); Serial.print(",ACCEL.y:"); Serial.print(acc.y); Serial.print(",ACCEL.z:"); Serial.print(acc.z); Serial.println(""); } if (qmi.getGyroscope(gyr.x, gyr.y, gyr.z)) { Serial.print("GYRO.x:"); Serial.print(gyr.x); Serial.print(",GYRO.y:"); Serial.print(gyr.y); Serial.print(",GYRO.z:"); Serial.print(gyr.z); Serial.println(""); } } delay(100); }